Anabolic processes in human skeletal muscle

The most commonly used AAS in medicine are testosterone and its various esters (but most commonly testosterone undecanoate , testosterone enanthate , testosterone cypionate , and testosterone propionate ), [53] nandrolone esters (most commonly nandrolone decanoate and nandrolone phenylpropionate ), stanozolol , and metandienone (methandrostenolone). [1] Others also available and used commonly but to a lesser extent include methyltestosterone , oxandrolone , mesterolone , and oxymetholone , as well as drostanolone propionate , metenolone (methylandrostenolone), and fluoxymesterone . [1] Dihydrotestosterone (DHT; androstanolone, stanolone) and its esters are also notable, although they are not widely used in medicine. [54] Boldenone undecylenate and trenbolone acetate are used in veterinary medicine . [1]

Anabolic processes tend toward "building up" organs and tissues . These processes produce growth and differentiation of cells and increase in body size, a process that involves synthesis of complex molecules . Examples of anabolic processes include the growth and mineralization of bone and increases in muscle mass. Endocrinologists have traditionally classified hormones as anabolic or catabolic, depending on which part of metabolism they stimulate. The classic anabolic hormones are the anabolic steroids , which stimulate protein synthesis, muscle growth, and insulin . [3] The balance between anabolism and catabolism is also regulated by circadian rhythms , with processes such as glucose metabolism fluctuating to match an animal's normal periods of activity throughout the day. [4]

Anabolic processes in human skeletal muscle

anabolic processes in human skeletal muscle

Media:

anabolic processes in human skeletal muscleanabolic processes in human skeletal muscleanabolic processes in human skeletal muscleanabolic processes in human skeletal muscleanabolic processes in human skeletal muscle